Nusinersen is a survival motor neuron-2 (SMN2)-directed antisense oligonucleotide (ASO) designed to treat SMA caused by mutations in chromosome 5q that lead to SMN protein deficiency. Using in vitro assays and studies in transgenic animal models of SMA, nusinersen was shown to increase exon 7 inclusion in SMN2 messenger ribonucleic acid (mRNA) transcripts and production of full-length SMN protein. Nusinersen acts to replace the SMN protein deficit which causes SMA, by increasing the splicing efficiency of the SMN2 pre- mRNA. More specifically, nusinersen in an 18-mer 2’-MOE phosphorothioate antisense oligonucleotide that acts as a splice-altering oligonucleotide. Nusinersen was designed to pair with a specific target sequence on the SMN2 pre-mRNA to displace heterogeneous ribonucleoproteins (hnRNPs) at the intronic splice silencing site-1 (ISS-1) between exons 7 and 8 to allow for more complete translation of SMN protein from the paralogous gene SMN2. Further reinforcing this concept, SMA phenotype is closely tied to SMN2 copy number. SMN2 serves to produce SMN protein, however at a greatly reduced rate because of differential splicing caused by the binding of the hnRNPs at the ISS-1.
Autopsy samples from patients (n=3) had higher levels of SMN2 messenger ribonucleic acid (mRNA) containing exon 7 in the thoracic spinal cord compared to untreated SMA infants. Cardiac Electrophysiology: In 121 patients with spinal muscular atrophy who received either nusinersen or sham-control, QTcF values >500 ms and change from baseline values >60 ms were observed in 5% of patients receiving nusinersen. Compared to the sham-control, there was no increase in the incidence of cardiac adverse reactions associated with delayed ventricular repolarization in patients treated with nusinersen.
Nusinersen is metabolized via exonuclease (3’- and 5’)-mediated hydrolysis primarily at the 3' end of the oligonucleotide. It is not a substrate for, or inhibitor or inducer of CYP450 enzymes. N-1 metabolites of the drug can be detected in the cerebrospinal fluid while N-1,2,3 metabolites can be predominantly detected in the plasma.
Single injection to adult monkeys produced apparent acute neurological impairment.
Hache M, Swoboda KJ, Sethna N, Farrow-Gillespie A, Khandji A, Xia S, Bishop KM: Intrathecal Injections in Children With Spinal Muscular Atrophy: Nusinersen Clinical Trial Experience. J Child Neurol. 2016 Jun;31(7):899-906. doi: 10.1177/0883073815627882. Epub 2016 Jan 27. [PubMed:26823478]
CENTER FOR DRUG EVALUATION AND RESEARCH [Link]