Conivaptan Hydrochloride

168626-94-6 Categories: , ,
  • # LGM Pharma is a Conivaptan Hydrochloride CAS# 168626-94-6 API supplier distributor based in the USA. Inquire about DMF, cGMP, price, availability, samples, sourcing, purity and more.
  • # Questions? Call our customer API support number 1-(800)-881-8210.
  • # LGM Pharma offers this active ingredient but not the finished dosage forms.
  • Inquire about this product >>

Product Details:

  • Product Name: Conivaptan Hydrochloride
  • CAS #: 168626-94-6
  • Mode of Action:

    Conivaptan is a dual AVP antagonist with nanomolar affinity for human arginine vasopressin V1A and V2 receptors in vitro. This antagonism occurs in the renal collecting ducts, resulting in aquaresis, or excretion of free water.

  • Pharmacodynamics:

    Conivaptan is a nonpeptide, dual antagonist of arginine vasopressin (AVP) V1A and V2 receptors. The level of AVP in circulating blood is critical for the regulation of water and electrolyte balance and is usually elevated in both euvolemic and hypervolemic hyponatremia. The AVP effect is mediated through V2 receptors, which are functionally coupled to aquaporin channels in the apical membrane of the collecting ducts of the kidney. These receptors help to maintain plasma osmolality within the normal range by increasing permeability of the renal collecting ducts to water. Vasopressin also causes vasoconstriction through its actions on vascular 1A receptors. The predominant pharmacodynamic effect of conivaptan in the treatment of hyponatremia is through its V2 antagonism of AVP in the renal collecting ducts, an effect that results in aquaresis, or excretion of free water. Conivaptan's antagonist activity on V1A receptors may also cause splanchnic vasodilation, resulting in possible hypotension or variceal bleeding in patients with cirrhosis. The pharmacodynamic effects of conivaptan include increased free water excretion (i.e., effective water clearance [EWC]) generally accompanied by increased net fluid loss, increased urine output, and decreased urine osmolality.

  • Metabolism:

    CYP3A4 is the sole cytochrome P450 isozyme responsible for the metabolism of conivaptan. Four metabolites have been identified. The pharmacological activity of the metabolites at V1a and V2 receptors ranged from approximately 3-50% and 50-100% that of conivaptan, respectively.

  • Toxicity:

    Although no data on overdosage in humans are available, conivaptan has been administered as a 20 mg loading dose on Day 1 followed by continuous infusion of 80 mg/day for 4 days in hyponatremia patients and up to 120 mg/day for 2 days in CHF patients. No new toxicities were identified at these higher doses, but adverse events related to the pharmacologic activity of conivaptan, e.g. hypotension and thirst, occurred more frequently at these higher doses.

  • IUPAC: (1, 1'-Biphenyl)-2-carboxamide, N-(4-((4, 5-dihydro-2-methylimidazo(4, 5-d)(1)benzazepin-6(1H)-yl)carbonyl)phenyl)-, monohydrochloride
  • ATC: C03XA02
  • PubChem: 151171
  • DrugBank: DB00872 (APRD01302)
  • Formula: C32-H20-N4-O2.Cl-H
  • Molecular Mass: 535.0443
  • Synonyms: (1,1'-Biphenyl)-2-carboxamide, N-(4-((4,5-dihydro-2-methylimidazo(4,5-d)(1)benzazepin-6(1H)-yl)carbonyl)phenyl)-, monohydrochloride, 4'-((4,5-Dihydro-2-methylimidazo(4,5-d)(1)benzazepin-6(1H)-yl)carbonyl)-2-biphenylcarboxanilide monohydrochloride, CI-1025, Conivaptan HCl, Conivaptan hydrochloride, UNII-75L57R6X36, Vaprisol, YM 087, YM087
  • SMILES: Cc1[nH]c-2c(n1)CCN(c3c2cccc3)C(=O)c4ccc(cc4)NC(=O)c5ccccc5c6ccccc6.Cl
  • InChl: 1S/C32H26N4O2.ClH/c1-21-33-28-19-20-36(29-14-8-7-13-27(29)30(28)34-21)32(38)23-15-17-24(18-16-23)35-31(37)26-12-6-5-11-25(26)22-9-3-2-4-10-22;/h2-18H,19-20H2,1H3,(H,33,34)(H,35,37);1H
  • General Reference:

    1. Ali F, Raufi MA, Washington B, Ghali JK: Conivaptan: a dual vasopressin receptor v1a/v2 antagonist [corrected]. Cardiovasc Drug Rev. 2007 Fall;25(3):261-79. Pubmed
    2. Mao ZL, Stalker D, Keirns J: Pharmacokinetics of conivaptan hydrochloride, a vasopressin V(1A)/V(2)-receptor antagonist, in patients with euvolemic or hypervolemic hyponatremia and with or without congestive heart failure from a prospective, 4-day open-label study. Clin Ther. 2009 Jul;31(7):1542-50. Pubmed
    3. Ghali JK, Farah JO, Daifallah S, Zabalawi HA, Zmily HD: Conivaptan and its role in the treatment of hyponatremia. Drug Des Devel Ther. 2009 Dec 29;3:253-68. Pubmed

Products currently covered by valid US Patents are offered for R&D use in accordance with 35 USC 271(e)+A13(1). Any patent infringement and resulting liability is solely at buyer risk.

API’s From Quality Manufacturers:

  • Streamlined API supply towards initial research stages as well as larger quantities of cGMP material for clinical trials and product commercialization
  • Premium quality GMP certified and fully accredited API manufacturing plants


  • Technical packages as well as access to filed DMF,
    ASMF or CEP (subject to availability)
  • Regulatory and technical assistance towards any
    submission type based on specific customer requirements

LGM Pharma Acquires CDMO

On July 27, 2020, LGM Pharma announced its acquisition of the formulation development and drug product contract manufacturing business of Nexgen Pharma, Inc. As a result, you will notice our new logo and visuals throughout the website. We’re working on updates to reflect the exciting, expanded CDMO capabilities and services we now can offer you.

This website uses cookies. By using our site, you agree to our terms of service