Cefuroxime, like the penicillins, is a beta-lactam antibiotic. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, it inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefuroxime interferes with an autolysin inhibitor.
Cefuroxime is a β-lactam type antibiotic. More specifically, it is a second-generation cephalosporin. Cephalosporins work the same way as penicillins: they interfere with the peptidoglycan synthesis of the bacterial wall by inhibiting the final transpeptidation needed for the cross-links. This effect is bactericidal. Cefuroxime is effective against the following organisms: Aerobic Gram-positive Microorganisms: Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes. Aerobic Gram-negative Microorganisms: Escherichia coli, Haemophilus influenzae (including beta-lactamase-producing strains), Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis (including beta-lactamase-producing strains), Neisseria gonorrhoeae (including beta-lactamase-producing strains). Spirochetes: Borrelia burgdorferi. Cefuroxime axetil is the prodrug
The axetil moiety is metabolized to acetaldehyde and acetic acid.
Allergic reactions might be expected, including rash, nasal congestion, cough, dry throat, eye irritation, or anaphylactic shock. Overdosage of cephalosporins can cause cerebral irritation leading to convulsions.