• #LGM Pharma is a Valsartan CAS# 137862-53-4 API supplier distributor based in the USA. Inquire about DMF, cGMP, price, availability, delivery, purity, and more.
  • #Questions? Call our customer API support number 1-(800)-881-8210.
  • #LGM Pharma offers this active ingredient but not the finished dosage forms.

Product Details:

  • CAS No: 137862-53-4
  • AHFC code: 24:32.1
  • Synonyms:
  • ATC Code: C09CA03
  • Chemical Formula: C21H32O
  • Molecular Weight: 435.5188
  • Assay/Purity: Typically NLT 98%
  • DrugBank: DB00177 (APRD00133)
  • SMILES: CCCCC(=O)N(CC1=CC=C(C=C1)C1=CC=CC=C1C1=NNN=N1)[C,,H](C(C)C)C(O)=O
  • InChl: ACWBQPMHZXGDFX-QFIPXVFZSA-N
  • PubChem: 60846
  • IUPAC: (2S)-3-methyl-2-[N-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)pentanamido]butanoic acid

Additional Details

Indication:
May be used as a first line agent to treat uncomplicated hypertension, isolated systolic hypertension and left ventricular hypertrophy. May be used as a first line agent to delay progression of diabetic nephropathy. Losartan may be also used as a second line agent in the treatment of congestive heart failure, systolic dysfunction, myocardial infarction and coronary artery disease in those intolerant of ACE inhibitors.
Pharmacodynamics:
Valsartan belongs to a class of antihypertensive agents called angiotensin II receptor blockers (ARBs). Valsartan is a specific and selective type-1 angiotensin II receptor (AT1) antagonist which blocks the blood pressure increasing effects angiotensin II via the renin-angiotensin-aldosterone system (RAAS). RAAS is a homeostatic mechanism for regulating hemodynamics, water and electrolyte balance. During sympathetic stimulation or when renal blood pressure or blood flow is reduced, renin is released from granular cells of the juxtaglomerular apparatus in the kidneys. Renin cleaves circulating angiotensinogen to angiotensin I, which is cleaved by angiotensin converting enzyme (ACE) to angiotensin II. Angiotensin II increases blood pressure by increasing total peripheral resistance, increasing sodium and water reabsorption in the kidneys via aldosterone secretion, and altering cardiovascular structure. Angiotensin II binds to two receptors: AT1 and type-2 angiotensin II receptor (AT2). AT1 is a G-protein coupled receptor (GPCR) that mediates the vasoconstrictive and aldosterone-secreting effects of angiotensin II. Studies performed in recent years suggest that AT2 antagonizes AT1-mediated effects and directly affects long-term blood pressure control by inducing vasorelaxation and increasing urinary sodium excretion. Angiotensin receptor blockers (ARBs) are non-peptide competitive inhibitors of AT1. ARBs block the ability of angiotensin II to stimulate pressor and cell proliferative effects. Unlike ACE inhibitors, ARBs do not affect bradykinin-induced vasodilation. The overall effect of ARBs is a decrease in blood pressure.
Mode of Action:
Valsartan is an ARB that selectively inhibits the binding of angiotensin II to AT1, which is found in many tissues such as vascular smooth muscle and the adrenal glands. This effectively inhibits the AT1-mediated vasoconstrictive and aldosterone-secreting effects of angiotensin II and results in a decrease in vascular resistance and blood pressure. Valsartan is selective for AT1 and has virtually no affinity for AT2. Inhibition of aldosterone secretion may inhibit sodium and water reabsorption in the kidneys while decreasing potassium excretion. The primary metabolite of valsartan, valeryl 4-hydroxy valsartan, has no pharmacological activity.
Metabolism:
Valsartan is excreted largely as unchanged drug (80%) and is minimally metabolized in humans. The primary circulating metabolite, 4-OH-valsartan, is pharmacologically inactive and produced CYP2C9. 4-OH-valsartan accounts for approximately 9% of the circulating dose of valsartan. Although valsartan is metabolized by CYP2C9, CYP-mediated drug-drug interactions between valsartan and other drugs is unlikely.
Toxicity:
General Reference:
Bader, M. (2004). Renin-angiotensin-aldosterone system. In S. Offermanns, & W. Rosenthal (Eds.). Encyclopedic reference of molecular pharmacology (pp. 810-814). Berlin, Germany: Springer. Diovan. (2009). [Electronic version]. e-CPS. Retrieved December 28, 2009. Stanfield, C.L., & Germann, W.J. (2008). Principles of human physiology (3 rd ed.). San Francisco, CA: Pearson Education, Inc.
Products currently covered by valid US Patents are offered for R&D use in accordance with 35 USC 271(e)+A13(1). Any patent infringement and resulting liability is solely at buyer risk.

API’s From Quality Manufacturers:

  • Cost effective materials based on specific requirements
  • Small quantities for initial research and larger development quantities towards product commercialization

 

  • Technical packages, letters of access to filed DMFs
  • Complete assistance in any regulatory filings
  • Top quality GMP certified manufacturers
  • Have necessary regulatory credentials